
512

&

www.ietdl.org
Published in IET Communications
Received on 28th January 2008
Revised on 5th August 2008
doi: 10.1049/iet-com.2008.0364

ISSN 1751-8628

Enabling peer-to-peer communication for
hosts in private address realms using IPv4
LSRR option and IPv414 addresses
C. Topal C. Akinlar
Computer Engineering Department, Anadolu University, Eskisehir, Turkey
E-mail: cakinlar@anadolu.edu.tr

Abstract: Enabling peer-to-peer (P2P) communication for hosts behind network address translation (NAT) boxes is
an important and difficult problem. Existing proposals, for example, UPnP, MIDCOM, TURN, STUN, STUNT, P2PNAT,
NATBlaster among others, offer only partial, limited and non-deterministic solutions. A framework that offers a
complete solution to the P2P communication problem is presented. The proposed framework is based on the use
of IPv4þ4 addresses and the standard IPv4 Loose Source Record Route (LSRR) option and requires no changes
whatsoever to end-host protocol stacks and Internet routers. The only requirement is a simple upgrade of
border routers with a new LSRR-based packet-forwarding algorithm for the P2P traffic. The implementation of
a Linux-based border router that runs the proposed forwarding algorithm is detailed, and how P2P
applications can benefit from this framework is described.
1 Introduction
The current IPv4 [1] Internet architecture with hosts behind
network address translation (NAT) [2, 3] boxes is suitable for
the client/server type of communication, for example, HTTP,
where the server is on the public Internet and the client is on a
private address realm [4], but it creates well-known problems
for important peer-to-peer (P2P) applications such as VoIP
[5, 6] and file sharing [7]. The problem arises from the fact that
nodes behind NAT boxes do not have globally routable IPv4
addresses, which makes them unreachable from the Internet.

IPv6 [8], when deployed, would provide each node on the
Internet with a globally routable IPv6 address, which would
restore the end-to-end connectivity necessary for P2P
communication. But the industry has been slow in
transitioning to IPv6 as it requires a complete upgrade of
the network infrastructure, that is, routers and end-hosts.
Ou [9] and Woodyatt [10] discuss the difficulties in
transitining to IPv6 and argue that it may take a long time
for some parts of the IPv4 Internet to switch to IPv6.

Fig. 1 shows a snapshot of the current Internet architecture.
We have two private realms A and B, for example, two home
The Institution of Engineering and Technology 2009
or small office home office (SOHO) networks, connected by
the public Internet. X and Y are hosts in private realms A
and B, respectively. They have non-routable private IPv4
addresses [4], X and Y respectively. A and B are border
routers, shortly BR, that perform network address port
translation (NAPT) and also act as firewalls for their private
realms. C and S are hosts on the public Internet and have
unique, routable IPv4 addresses.

To establish communication for hosts behind NAT boxes,
for example, between X and Y in Fig. 1, existing applications
use proxies in the Internet, for example, host S in Fig. 1. In
this model, both hosts send packets to the proxy, which relays
the traffic to the communicating pair. Clearly, this model
solves the problem but very inefficiently: All traffic must go
through the proxy, which not only puts extra load on the
Internet, but also makes the proxy a central point of
congestion and failure. Ideally, we want the hosts to
exchange packets directly without the help of such proxies,
called P2P communication.

To enable P2P communication for nodes behind NAT
boxes, hole punching techniques have been proposed
exemplified by STUN [11, 12], STUNT [13, 14],
IET Commun., 2009, Vol. 3, Iss. 4, pp. 512–519
doi: 10.1049/iet-com.2008.0364



IET
do

www.ietdl.org
P2PNAT [15, 16] and NATBlaster [17]. The general idea
with these techniques is to let a node behind a NAT box,
for example, X, talk to a server S on the public Internet
and learn (public IP address:port) pair, for example, A:pa,
assigned to its (private IP address:local port) pair, for
example, X:px, for a certain session and then disclose this
information to the peer, for example, Y, for direct
communication. Y employs the same prediction procedure
and sends its predicted endpoint parameters, for example,
B:pb, to X over an out-of-band channel such as SIP
[5, 18]. X would then send the ensuing traffic to B:pb, and
Y would send to A:pa for direct P2P communication.
Although this port prediction may work if both BRs are
cone NATs, it fails when one of the BRs is a symmetric
NAT [19]. A symmetric NAT creates a NAT binding
based on the source IP address, shortly SA, and source port
number, shortly sp, as well as the destination IP address,
shortly DA, and destination port number, shortly dp, and is
very restrictive [19]. It is known that most BRs today are
symmetric NATs [20], which makes hole punching
techniques fail in many cases. It should also be noted that
cone NATs are susceptible to port scan attacks, which create
additional security risks [20, 21]. So making all BRs cone
NATs is not an acceptable solution for the P2P
communication problem because of a reduced level of security.

For P2P TCP [22] communication, more complex
techniques are employed: After both peers initiate a TCP
connection and the outgoing SYN packet from a host
establishes the necessary NAT state at the host’s NAT box,
the peers use such techniques as port prediction, low TTL-
valued packets or coordination by a third-party server (in
the form of spoofed IP packets or sequence number
notification by an out-of-band protocol) to establish the
TCP connection [13]. Although these techniques help set
up the TCP connection in certain limited cases, they are
very complex and unreliable.

There are other initiatives exemplified by UPnP [23] and
MIDCOM [24, 25] that propose on-demand port
allocation for a session by a priori negotiations with the

Figure 1 Two private realms, A and B, connected by the
public Internet

A and B are border routers that perform NAPT and firewall
functionality
Commun., 2009, Vol. 3, Iss. 4, pp. 512–519
i: 10.1049/iet-com.2008.0364
BR. Within these frameworks, a node talks to BR or an
agent before initiating a P2P session and allocates the
required ports necessary for the communication. The node
then discloses the BR IP address and the allocated ports to
the peer for P2P communication. The problem with these
proposals is that they require a simultaneous upgrade of all
existing border routers, which makes the transition difficult.
Additionally, by opening up a port to all incoming traffic,
UPnP reduces the level of security provided by the current
NAT boxes [20].

Other alternatives, exemplified by TURN [26], propose
putting an intermediate node (a relay agent) in the path of
the communication, which would terminate the session for
a peer and act like a proxy. Although this would work for
all NAT types, it requires the deployment of such relay
agents in the global Internet, which is not only difficult but
is also against the nature of P2P communication.

Additionally, several NAT-extended architectures have
been proposed, exemplified by IPv4þ4 [27], TRIAD [28],
IPNL [29], RSIP [30], to restore end-to-end addressing
and connectivity. If deployed, these architectures would
enable P2P communication, but they all require a complete
rehaul of the existing network infrastructure including all
BRs, end-hosts and even existing client/server applications,
which simply is not feasible.

In this paper, we present a framework based on the use of
IPv4þ4 addresses [27] and the standard IPv4 Loose Source
Record Route (LSRR) option [31] that offers a complete
solution to the P2P communication problem. Our proposal
requires no changes whatsoever to end-hosts and Internet
routers. The only requirement is a simple upgrade of BRs
with a new LSRR-based packet-forwarding algorithm for
the P2P traffic (described in Section 2.3). The upgraded
BR performs NAPT forwarding for the traditional client/
server traffic and the proposed LSRR-based forwarding for
the P2P traffic. We describe how P2P communication
works in the presence of upgraded BRs. We then detail our
implementation of a Linux-based BR that runs the
proposed LSRR-based forwarding algorithm in Section 3,
and describe how P2P applications can benefit from our
framework for seamless, secure P2P communication.

2 Proposed framework: IPv414
addresses and LSRR-based
forwarding
An IPv4þ4 address is a backward-compatible, globally
unique network address for a node behind a NAT box, and
Figure 2 X sending a packet to Y with IPv4 LSRR option

The packet stops at B and C before arriving at Y
513

& The Institution of Engineering and Technology 2009



514

&

www.ietdl.org
is formed by concatenating the 32-bit globally routable IPv4
address of the BR with the 32-bit private IPv4 address of an
internal node [27]. In a sense, the globally unique IPv4
address of the BR identifies the private realm and the
private IPv4 address of the host is like an extension
number inside the realm. With this convention, IPv4þ4
address of X in Fig. 1 is A.X and that of Y is B.Y. Given
that each node in a private realm can uniquely be identified
by a 64-bit IPv4þ4 address, how can we make use of
these addresses to solve the P2P communication problem?
Turanyi et al. [32] propose a solution by defining a new
protocol and header structure, and requiring the upgrade of
all BRs, end-hosts and even all client/server applications to
the new protocol, which simply is not feasible. What we
need is a way to make use of IPv4þ4 addresses while
requiring minimal changes to the existing network
infrastructure.

In this section, we show how this can be done with the
IPv4 LSRR option [31]. We first describe how LSRR
works and then demonstrate how P2P communication can
be achieved if BRs employ a modified version of the LSRR
forwarding/filtering algorithm. To benefit from our
framework, P2P applications must send IPv4 packets with
the LSRR option. As transmission of IPv4 packets with
LSRR option is part of all major operating system protocol
stacks, for example, Windows, Linux, Solaris, our proposal
demands no changes whatsoever to end-host protocol
stacks or IPv4 routers.

2.1 IPv4 LSRR option

IPv4 LSRR option, defined in RFC 791 [1], allows the
sender of an IPv4 packet to specify a list of nodes (IPv4
routers) that the packet must pass through on its way to
the destination and to record the route information. DA of
the initial packet contains the IPv4 address of the first hop
The Institution of Engineering and Technology 2009
node. At each stop, the address pointed to by the option
pointer is swapped with DA of the packet [31].

Fig. 2 shows an example packet flow using the LSRR
option: X sends a packet to Y and wishes the packet to
make stops at B and C on the path to the destination. This
is achieved using the LSRR option as follows: When the
packet leaves X, SA is set to X, SA ¼ X, and DA is set to
the first hop node B’s IPv4 address, DA ¼ B. LSRR(1): C,
Y indicates that after B the packet must go to C and then
to Y. LSSR option pointer (specified in parentheses)
indicates where the packet should be sent by the next hop.
At the beginning this is set to 1. In a real IPv4
implementation, LSRR option pointer contains the byte
offset of the next IPv4 address on the list from the
beginning of the option, and would initially be equal to
4. At each stop it will be incremented by 4. When B
receives the packet, it realises that LSRR option is not
exhausted yet. So it swaps DA ¼ B, with the IPv4 address
pointed to by the LSSR pointer, that is, C. B then
increments the LSRR pointer. Notice that SA is not
changed. The new packet with SA ¼ X and DA ¼ C will
be delivered to C. C performs LSRR processing similar to
B: It swaps DA ¼ C with the IPv4 address pointed to by
LSRR pointer, that is, Y, and increments the LSRR
pointer. The new packet has SA ¼ X and DA ¼ Y and
will be delivered to Y. Y realises that LSRR option has
exhausted and that it is the last stop on the source route. Y
also learns the route back to X from the LSRR values,
which contains the path in the reverse direction.

2.2 P2P communication with modified
LSRR-based border routers

Assume that X having IPv4þ4 address A.X wishes to
establish bidirectional P2P communication with Y having
IPv4þ4 address B.Y. Further assume that X wishes to use
Figure 3 Using modified LSRR forwarding and IPv4þ4 addresses for P2P UDP communication

a Packet transmission from A.X:px to B.Y:py
b Packet transmission from B.Y:py to A.X:px
c Packet transmission from A.X:px to B.Y:py
IET Commun., 2009, Vol. 3, Iss. 4, pp. 512–519
doi: 10.1049/iet-com.2008.0364



IET
do

www.ietdl.org
port px and Y wishes to use port py for this communication.
We designate the P2P session key as kA.X:px, B.Y:pyl. How
X and Y learn the IP addresses of their BRs, and how they
agree on the P2P communication parameters, is out of the
scope of this paper. Existing P2P applications, for example,
VoIP using SIP [5, 33] and file sharing [7], use a separate
control path (protocol) to establish these parameters before
the actual P2P communication begins.

Below we first consider P2P UDP [34] packet exchange
between hosts X and Y. We then consider P2P TCP
connection establishement and ensuing packet exchange
between the same two hosts.

Fig. 3 depicts UDP packet flow between A.X:px and
B.Y:py. We assume that after X and Y agree on the
communication parameters, X is the first node to send a
UDP packet to Y. Fig. 3a depicts packet flow from X to Y:
When the packet leaves X, it has sp¼px, dp ¼ py,
SA ¼ X, DA ¼ A, LSRR(1): B, Y. Note that DA equals
the IPv4 address of X’s BR, A. X also specifies in LSRR
that A must forward the packet to B, which must forward
the packet to Y, the packet’s final destination. When A
receives this packet, it tries to locate the P2P session in its
session table. Our BR A maintains a session table for P2P
traffic, in addition to a NAT table for the traditional
client/server traffic. As this is the first outgoing packet
belonging to the session, A creates an entry in the session
table. Thus a session is created only by solicited (initiated
from inside) outgoing traffic.

The packet now goes through LSRR processing.
According to regular LSRR processing, A swaps the IP
address pointed to by the LSRR pointer and DA. So the
packet header becomes: sp ¼ px, dp ¼ py, SA ¼ X,
DA ¼ B, and LSRR option becomes: LSRR(2): A, Y. Notice
that standard LSRR processing does not change SA ¼ X.
So if A were to send this modified packet to the Internet,
it would be dropped at the first ISP router due to ingress
filtering [35]. According to RFC 1918 [4], BRs must
perform packet filtering and no packet having a private SA
or DA should be sent out to the public Internet. This
means that we cannot send the packet with SA ¼ X.
Therefore we propose a modified LSRR processing
algorithm at our BR: A moves the first address in LSRR
list, B, to DA, puts SA ¼ X, in its place in LSRR list, and
sets SA ¼ A for the outgoing packet. So when the packet
leaves A, its header contains: sp ¼ px, dp ¼ py, SA ¼ A,
DA ¼ B, and LSRR option becomes: LSRR(2): X,
Y. Notice that sp and dp are not changed.

When B receives this packet, it consults its P2P session
table. As B is not aware of the session yet (notice that B
will learn about the session after a packet is sent from Y to
X), the packet is simply dropped. Thus, unsolicited
incoming traffic is simply dropped at our BR similar to
existing NAT boxes. Traffic for a session is passed inside
only if the BR knows about that session.
Commun., 2009, Vol. 3, Iss. 4, pp. 512–519
i: 10.1049/iet-com.2008.0364
Fig. 3b illustrates Y sending a packet to A.X:px. When the
packet leaves Y, its header contains: sp ¼ py, dp ¼ px,
SA ¼ Y, DA ¼ B, LSRR(1): A, X. B receives this packet
and creates a new entry in its session table because this is
the first packet belonging to the session. B then performs
the proposed LSRR processing similar to A, and sends the
packet out with headers: sp ¼ py, dp ¼ px, SA ¼ B,
DA ¼ A, LSRR(2): Y, X.

When A receives this packet, it locates the session,
employs our LSRR processing algorithm and sends the
packet to X with the following packet header: sp ¼ py,
dp ¼ px, SA ¼ Y, DA ¼ X, LSRR(3): B, A. Host X
receives this packet and realises that the LSRR option has
exhausted. The packet is then delivered to the application
listening to port px. P2P application not only gets the
packet, but also learns the reverse path to Y from the
LSRR option.

In Fig. 3c we illustrate X sending another packet to B.Y:py.
This time the packet is passed inside private realm B because
B now knows about the session.

P2P TCP communication is more difficult than P2P UDP
communication: As TCP is a connection-oriented protocol, a
connection must be established first before the packet flows
begins. Fig. 4 depicts how a TCP connection between X
and Y can be established. We have both X and Y as active
participants, that is, clients, and BRs assist in connection
setup. After the exchange of the session parameters via a
seperate control protocol, we assume that X is the first
node to send out the TCP SYN packet. This is illustrated
in Fig. 4a, where the packet from X reaches A, goes
through our LSRR processing and then reaches B. By now
A is aware of the TCP session kA.X:px, B.Y:pyl, but B
does not know anything about the session yet. So B simply
drops the packet. When the TCP SYN packet from Y
reaches B (Fig. 4b), B creates an entry in its session table
and forwards the packet to A. At this point, both A and B
know about the session. When A receives this TCP SYN
packet, it drops the packet and behaves like a TCP server
sending out SYNþACK packets to both X and Y (Fig. 4c).
It is easy to see that A can do this because it knows the
sequence numbers used by both X and Y. These
SYNþACK messages will make it to X and Y. The TCP
layers at X and Y will send out ACK packets to complete
the 3-way handshake. In Fig. 4d, we depict how the ACK
packet from X is processed at BRs A and B before arriving
at Y. ACK packet from Y to X will be subject to similar
processing.

It is possible that the initial SYN packets from X and Y
cross A and B at the same time. In this case, B generates
SYNþACK when the SYN packet from X reaches B, and
A generates SYNþACK when the SYN packet from Y
reaches A. Even if A and B forward these SYNþACK
packets generated by the other side, they will simply be
515
& The Institution of Engineering and Technology 2009



516

& T

www.ietdl.org
Figure 4 Using modified LSRR forwarding and IPv4þ4 addresses for P2P TCP communication

X and Y are both active participants, that is, clients
a Initial SYN packet from A.X:px to B.Y:py
b Initial SYN packet from B.Y:py to A.X:px
c BR A generating SYNþACK packets
d ACK message from A.X:px to B.Y:py
duplicate packets and dropped by X and Y, causing no harm
to the connection setup.

After the connection setup, further packet exchange
between X and Y is no different than UDP packets. BRs A
and B simply apply our LSRR processing algorithm on the
packets, and the packets seamlessly make it to both X and
Y (refer to Fig. 4d). Finally, connection termination, that
is, FIN messages, would be processed in the same manner
except that BRs A and B would delete the session from
their session tables after the connection is closed. Notice
that this is no different than NAPT extry deletion
algorithm employed by the existing NAT boxes.

2.3 Border router packet forwarding
algorithm

In this section, we present our BR packet processing
algorithm in a more formal manner using a pseudocode.
We divide the algorithm into two cases: (1) When a packet
is received from an internal host, that is, when BR receives
a packet from one of its LAN interfaces (Fig. 5) and (2)
when a packet is received from the Internet, that is, when
BR receives a packet from its WAN interface (Fig. 6). The
first algorithm consists of two parts, labelled I and II, and
the second algorithm consists of three parts, labelled I, II
and III.

Part I describes the handling of packets not containing the
LSRR option. These packets belong to traditional client/
server communication, where the client is in the private
he Institution of Engineering and Technology 2009
realm and the server is in the Internet. When BR receives
such a packet, it tries to locate the NAT entry for the
session (step I.1). If the packet is received from a LAN
interface and the session is not found, then this is the first
packet belonging to the session. So BR creates a NAT
entry in the NAT table (step I.2.1) and changes the
packet’s SA and sp (step I.3). If the packet is received from
the WAN interface and the session is not found, then the
packet is simply dropped (step I.2). If the NAT entry is
found for an incoming packet, then the packet’s DA and
dp are changed, and the packet is forwarded inside (step I.3).

Figure 5 Algorithm for processing packets received from a
LAN interface
IET Commun., 2009, Vol. 3, Iss. 4, pp. 512–519
doi: 10.1049/iet-com.2008.0364



IET
do

www.ietdl.org
Part II describes the handling of packets that contain an
LSRR option with two addresses in the option body.
These packets belong to P2P communication where one
peer is on a private realm and the other peer is on a
different private realm, for example, P2P communication
between A.X and B.Y in Fig. 1. When BR receives such a
packet, it tries to locate the session in the session table
(step II.1). If the packet is received from a LAN interface
and the session is not found, then this is the first packet
belonging to the session. So BR creates an entry in the
session table (step II.2.1) and changes packet’s SA, DA
and the LSRR option (step II.3). If the packet is received
from the WAN interface and the session is not found, then
the packet is simply dropped (step II.2). If the session is
found for an incoming packet, then the packet’s SA, DA
and the LSRR option are changed, and the packet is
forwarded inside (step II.3).

We see from steps I.2 and II.2 in Fig. 6 that when BR
receives a packet from the WAN interface and the session
that the packet belongs to is not found in the BR’s NAT
or session tables, then the packet is simply dropped. These
steps provide the necessary security in the sense that only
solicited incoming traffic is let inside the private realm. All
unsolicited traffic is simply dropped by BR.

Step III in Fig. 6 describes the special case of BR-
assisted TCP connection establishment. When BR
receives a SYN packet, it first locates the session. If the
session is not found, BR simply drops the packet. If the
session is found and the connection is not established
yet, BR generates two SYNþACK packets (steps III.3
and III.4), one for each peer, necessary for the peers to
complete the 3-way handshake. After the peers receive these
SYNþACK packets, they would send out ACK packets to

Figure 6 Algorithm for processing packets received from
the WAN interface
Commun., 2009, Vol. 3, Iss. 4, pp. 512–519
i: 10.1049/iet-com.2008.0364
complete the connection setup (refer to Fig. 4). Further
packets belonging to the session would be processed by step
II in both algorithms. So, after the TCP connection is
established, both P2P TCP and UDP packets are processed
in the same manner.

3 Implementation details and
concluding remarks
To implement and test the proposed framework, we set up
the network depicted in Fig. 1. We have two private realms
A and B connected by the Internet. There is one host X in
realm A and one host Y in realm B, both of which are PCs
running Windows.

BRs A and B are emulated by PCs or router boards with at
least two interfaces, one attached to the Internet and the
other(s) attached to the private realm. We used two
different router boards: PC Engines ALIX.2C3 [36] and
Pronghorn SBC-250 [37]. ALIX.2C3 is a router board
with 500 MHz AMD processor and three Ethernet
interfaces. Pronghorn SBC-250 is a router board with an
Intel IXP425 processor and two Ethernet interfaces. Both
of these router boards run the latest 2.6.x Linux kernel [38].

We have designed a Linux driver that implements BR
functionality. Our driver, developed as a Linux-kernel
loadable module for 2.6 kernels, implements the packet-
forwarding algorithms in Figs. 5 and 6. The driver consists
of about 1500 lines of C code and uses the Linux Netfilter
architecture [39]. Netfilter is a set of hooks in the Linux
kernel protocol stack that allows callback functions to be
registered. We attach two hooks at BR WAN interface,
one for incoming packets and one for outgoing packets.
When a packet arrives from the WAN, Netfilter gives the
packet to our driver, which processes the packet before
letting it move up the protocol stack. Similarly, before a
packet is sent down the WAN interface, Netfilter calls our
driver, which processes the packet.

Our implementation of the proposed framework
demonstrates that if BRs keep a P2P session table and
employ our LSRR processing/filtering algorithm, secure
seamless P2P communication can easily be achieved.
Although our proposal demands the upgrade of all existing
BRs, we require no changes to end-host protocol stacks or
IPv4 routers. All major operating systems that we tested,
for example, Windows, Linux, Solaris, have the necessary
functionality and the API to send/receive IPv4 packets
having the LSRR option using the existing sockets
API [40]. So our implementation requires no changes
whatsoever to host TCP/IP protocol stacks. To benefit
from our framework, a P2P application must learn the IPv4
address of its BR and send IPv4 packets using the LSRR
option. We also note that our BRs are as secure as the
existing ‘symmetric’ NAT boxes [19]: (1) A new session is
created only by solicited traffic, that is, traffic originating
517

& The Institution of Engineering and Technology 2009



518

&

www.ietdl.org
from inside the realm and (2) an incoming packet is
passed inside only if all session parameters match an
existing session.

We have shown that an LSRR-based Internet using
IPv4þ4 addresses seamlessly enables P2P communication.
So, we believe that an LSRR-based Internet using IPv4þ4
addresses is the way to go in the evolution to the
next-generation Internet until IPv6 is fully deployed.

4 Acknowledgment
This work was partially supported by Turkish Science and
Technology Research Institute (TUBITAK) grant 107E166.

5 References

[1] POSTEL J.: ‘Internet protocol Darpa Internet program
protocol specification’, RFC 791, 1981

[2] TSIRTSIS G., SRISURESH P.: ‘Network address translation –
protocol translation (NAT-PT)’, RFC 2766, 2000

[3] SRISURESH P., HOLDREGE M.: ‘IP network address translator
(NAT) terminology and considerations’, RFC 2663, 2000

[4] REKHTER Y., MOSKOWITZ B., KARRENBERG D., DE GROOT G., LEAR E.:
‘Address allocation for private internets’, RFC 1918, 1996

[5] ROSENBERG J., SCHULZRINNE H., CAMARILLO G., JOHNSTON A.,
PETERSON J., SPARKS R., HANDLEY M., SCHOOLER E.: ‘SIP: session
initiation protocol’, RFC 3261, 2002

[6] Wikipedia IP Phone page, http://en.wikipedia.org/
wiki/SIP_Phone, accessed August 2008

[7] ABERER K., HAUSWIRTH M.: ‘An overview on peer-to-peer
information systems’. Workshop on Distributed Data and
Structures (WDAS 2002), Paris, France, March 2002

[8] DEERING S., HINDEN R.: ‘Internet protocol’, Version 6 (IPv6)
specification’, RFC 2460, 1996

[9] OU G.: ‘The truth about the IPv6 transition’, http://
blogs.zdnet.com/Ou/?p=367, accessed August 2008

[10] WOODYATT J.H.: ‘IPv6 and NAT . . . again!’, http://jhw.vox.
com/library/post/ipv6-and-nat-again.html, accessed August
2008

[11] ROSENBERG J., WEINBERGER J., HUITEMA C., MAHY R.: ‘STUN –
simple traversal of user datagram protocol (UDP) through
network address translators (NATs)’, RFC 3489, 2003

[12] GUHA S., TAKEDA Y., FRANCIS P.: ‘NUTSS: a SIP-based
approach to UDP and TCP network connectivity’.
SIGCOMM Workshops, Portland, OR, 2004
The Institution of Engineering and Technology 2009
[13] GUHA S., FRANCIS P.: ‘Characterization and measurement
of TCP traversal through NATs and firewalls’, Internet
Measurement Conference, Berkeley, CA, 2005

[14] GUHA S.: ‘STUNT – simple traversal of UDP through
NATs and TCP too: work in progress’, http://nutss.gforge.
cis.cornell.edu/pub/draft-guha-STUNT-00.txt

[15] FORD B., SRISURESH P., KEGEL D.: ‘Peer-to-peer
communication across network address translators’.
USENIX Annual Technical Conference, Anaheim, CA, 2005

[16] EPPINGER J.L.: ‘TCP connections for P2P Apps: a software
approach to solving the NAT problem’. Technical Report,
Carnegie Mellon University, CMU-ISRI-05-104, Pittsburg,
PA, 2005

[17] BIGGADIKE A., FERULLO D., WILSON G., PERRING A.:
‘NATBLASTER: establishing TCP connections between
hosts behind NATs’. ACM SIGCOMM ASIA Workshop,
Beijing, China, 2005

[18] JOHNSTON A., DONOVAN S., SPARKS R., CUNNINGHAM C., SUMMERS

K.: ‘Session initiation protocol (SIP) basic call flow examples’,
RFC 3665, 2003

[19] HUSTON G.: ‘Anatomy: a look inside network
address translator’, Internet Protocol J, 2004, 7, (3), pp. 2–32

[20] Newport Networks Ltd: ‘Solving the firewall and NAT
traversal issues for multimedia over IP services’, http://
www.newport-networks.com, accessed August 2008

[21] MCNAB C.: ‘Network security assesment’ (O’Reilly
Publishing, 2008, 2nd edn.)

[22] POSTEL J.: ‘Transmission control protocol’, RFC 793, 1981

[23] UPnP Forum, http://www.upnp.org, accessed August
2008

[24] SRISURESH P., KUTHAN J., ROSENBERG J., MOLITOR A., RAYHAN A.:
‘Middlebox communication architecture and framework’,
RFC 3303, 2002

[25] STIEMERLING M., QUITTEK J., TAYLOR T.: ‘Middlebox
communication (MIDCOM) protocol semantics’, RFC 3989-
bis, 2007

[26] ROSENBERG J., MAHY R., HUITEMA C.: ‘Traversal using
relay NAT (TURN)’, draft-rosenberg-midcom-turn-08.txt,
2005

[27] TURANYI Z., VALKO A.: ‘IPv4þ4’. 10th Int. Conf. Networking
Protocols (ICNP 2002), 2002

[28] CHERITON D., GRITTER M.: ‘TRIAD: a scalable deployable
NAT-based Internet architecture’. Technical Report, 2000
IET Commun., 2009, Vol. 3, Iss. 4, pp. 512–519
doi: 10.1049/iet-com.2008.0364



IE
do

www.ietdl.org
[29] FRANCIS P., GUMMADI R.: ‘IPNL: a NAT-extended Internet
architecture’. ACM SIGCOMM, 2001

[30] BORELLA M., LO J., GRABELSKY D., MONTENEGRO G.: ‘Realm
specific IP: framework’, RFC 3102, 2001

[31] POSTEL J., REYNOLDS J.: ‘Comments on the IP source route
option’, http://www.mirrorservice.org/sites/ftp.isi.edu/in-
notes/museum/ip-source-route-comments.txt, accessed
August 2008

[32] TURANYI Z., VALKO A., CAMPBELL A.: ‘Design, implementation
and evaluation of IPv4þ4’. ACM SIGCOMM, Stanford, CA,
1988, pp. 314–329

[33] HANDLEY M., JACOBSON V.: ‘SDP: session description
protocol’, RFC 2327, 2004

[34] POSTEL J.: ‘User datagram protocol’, RFC 768, 1980
T Commun., 2009, Vol. 3, Iss. 4, pp. 512–519
i: 10.1049/iet-com.2008.0364
[35] FERGUSON P., SENIE D.: ‘Network ingress filtering: defeating
denial of service attacks which employ IP source address
spoofing’, RFC 2827, 2000

[36] PC Enginees ALIX2C3, http://www.pcengines.ch/
alix2c3.htm, accessed August 2008

[37] Pronghorn SBC-250, http://www.adiengineering.com,
accessed August 2008

[38] Linux Homepage, http://www.linux.org, accessed August
2008

[39] Linux Netfilter Homepage, http://www.netfilter.org,
accessed August 2008

[40] STEVENS W.R., FENNER B., RUDOFF A.M.: ‘UNIX(r) network
programming: the sockets networking API’ (Addison-
Wesley, 2003, 3rd edn.)
519

& The Institution of Engineering and Technology 2009


