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Abstract�Among various approaches to eye tracking systems,
light-re�ection based systems with non-imaging sensors, e.g.,
photodiodes or phototransistors, are known to have relatively low
complexity; yet, they provide moderately accurate estimation of
the point of gaze. In this paper, a low-computational approach
on gaze estimation is proposed using the Eye Touch system,
which is a light-re�ection based eye tracking system, previously
introduced by the authors. Based on the physical implementation
of Eye Touch, the sensor measurements are now utilized in
low-computational least-squares algorithms to estimate arbitrary
gaze directions, unlike the existing light re�ection-based systems,
including the initial Eye Touch implementation, where only
limited prede�ned regions were distinguished. The system also
utilizes an effective pattern classi�cation algorithm to be able
to perform left, right, and double clicks based on respective
eye winks with signi�cantly high accuracy. In order to avoid
accuracy problems for sensitive sensor biasing hardware, a
robust custom microcontroller-based data acquisition system is
developed. Consequently, the physical size and cost of the overall
Eye Touch system are considerably reduced while the power
ef�ciency is improved. The results of the experimental analysis
over numerous subjects clearly indicate that the proposed eye
tracking system can classify eye winks with 98% accuracy, and
attain an accurate gaze direction with an average angular error
of about 0.93°. Due to its lightweight structure, competitive
accuracy and low-computational requirements relative to video-
based eye tracking systems, the proposed system is a promising
human-computer interface for both stationary and mobile eye
tracking applications.

Index Terms�Assistive technology, eye tracking, gaze estima-
tion, human-computer interface.

I. Introduction

Eye tracking has become a key technology due to its po-
tential in several applications, ranging from human-computer
interface systems for people with and without disabilities to
diagnosis of physiological, neurological, and ophthalmologic
problems in individuals and mobile systems, such as interfaces
for wearable computers. In the literature, a variety of eye
tracking systems have been proposed that can be classi�ed
based on their physical structure or working style. In terms
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systems that is implemented by placing IR LEDs and IR
sensors around an eyeglasses frame. The �rst experimental
results of this tracking system were presented in [3]. Later
on, a more ef�cient prototype was constructed and tested via
simple sensor measurements in [4]. In both studies, Eye Touch
was able to coarsely separate gaze directions on a grid of 3×4
on the screen. In other words, gaze positions were computed
in a discrete manner rather than computing an actual gaze
vector. Besides, the hardware of the tracking system included
a professional analog-to-digital converter, which keeps the cost
of the overall system unaffordable.

In this paper, we further improved upon Eye Touch system
so that a low-computational approach on gaze estimation with
continuous resolution is achieved. Speci�cally, the follow-
ing contributions can be listed with respect to our previous
work [3], [4]:

1) The sensor measurements are utilized in low-
computational least-squares based algorithms to estimate
the point of gaze (PoG). Thus, continuous resolution is
attained, which enables Eye Touch to point anywhere on
the screen rather than a prede�ned grid.

2) The system is capable of performing left, right, and
double clicks using appropriate eye winks with the help
of a state-of-the-art SVM classi�er, rather than a simple
nearest neighbor classi�cation algorithm. In this way,
accuracy and precision of the classi�cation is improved.

3) A custom microcontroller-based data acquisition system
is developed to accurately sample and digitize the analog
sensor outputs. As a result, the physical size and the cost
of Eye Touch system is considerably reduced.

4) An analysis is conducted to prove that Eye Touch is eye
safe as far as IEC 825-1 standard is concerned.

The results of the experimental analysis over an extended
set of subjects indicate that the proposed tracking system
accurately classi�es user events, and computes the point of
gaze with a considerably high accuracy while requiring low-
computational power and low-cost, as well.
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(a)

(b)

Fig. 2. Closer look to eye touch goggles�front and rear views. (a) IR
sensors covered with cylindrical covers. (b) IR LEDs. Note that the sensor
IDs are indicated on the rear view.

default solution by achieving fairly high performance in terms
of accuracy, they have drawbacks if low-complexity, hence
low-power systems are desired.

In video-based eye tracking systems, the number of cameras
for sampling the eye vicinity varies according to the purpose or
the accuracy of the system. In some systems, monitoring one
of the eyes may be suf�cient, whereas in some other systems,
both eyes may need to be tracked [21], [23], [40]-[43].

Likewise, camera resolutions and camera sampling frequen-
cies are also important parameters that concern the ef�ciency
and time-complexity of video-based eye tracking systems. In
order to reach better accuracy levels, spatio-temporally higher
resolution cameras might be preferred, necessitating additional
hardware to meet the real-time processing requirements. Sim-
ilarly, acquisition or conversion of the video signal to digital
signal may also require its own authentic circuitry [22].

There are also remote video-based eye tracking systems that
involve more sophisticated imaging hardware to provide high
accuracy when operating far from the user. Although, for many
users, remote video-based eye trackers are easier to use than
intrusive systems, they require the user to keep his/her head
in a particular area. Most of these video-based eye tracking
systems bene�t from differentiating bright and dark pupil
images to detect pupil [23]-[25], [39], [42] and use Purkinje
re�ection [26], [40] to estimate the point of gaze. Detection
of locations of pupil and glints enables to use mathematical
models based on 3-D geometry to estimate the gaze vector of
the user [27], [41]-[43]. Besides the advantages, these systems
also require explicit 3-D calibrations of the employed cameras
and light sources.

Apart from the computational and hardware problems of
video-based eye tracking systems, they may also cause in-
tegration dif�culties in speci�c applications, such as mobile
applications due to the problems including mounting the
camera in an appropriate way and placing hardware capable of
providing required computation power. With all pros and cons,
video-based eye tracking systems offer the most competitive

Fig. 3. Data acquisition device�front and back views. (a) Power on LED.
(b) Goggles connector. (c) Reset button. (d) Microcontroller. (e) Supply
voltage potentiometer. (f) Power unit cooler fan. (g) DC in. (h) USB port.
(i) Microcontroller programming socket.

solutions for the era, hence, we present a more detailed
comparison of Eye Touch system with the video-based systems
in terms of accuracy and head pose invariance in Section III-D.

III. Eye Touch System

The Eye Touch system, as shown in Fig. 1, is composed
of the following components: Eye Touch goggles, a data
acquisition device, Eye Touch software, which runs on a
regular PC, and an external power supply. Each of these
components will be introduced in the following.

The Eye Touch system is designed to be capable of discov-
ering eye clicking gestures and eye gaze direction in real-time.
This capability is due to two simple facts.

1) The human eye has two main parts with respect to the
color intensity distribution: sclera and iris-pupil. While
the sclera has mostly white color, the iris-pupil circle
consists of darker tones such as brown, black, etc. This
color distribution is �xed in all humans in infrared (IR)
range.

2) Different colors re�ect the light in different amounts and
around different wavelengths.

Considering these basic light re�ection principles and the
spherical structure of eye surface, it is possible to acquire
the re�ected light intensities from speci�c portions of the eye
surface and then �nd out the current clicking gesture or eye
gaze direction based on the measurements of re�ected light
intensities.

The Eye Touch system provides only a relative eye-gaze di-
rection with respect to the absolute head direction. Therefore,



TOPAL et al.: LOW-COMPUTATIONAL APPROACH ON GAZE ESTIMATION WITH EYE TOUCH SYSTEM 231

for the system to constitute an overall computer interface, a
chin-rest must be used to avoid head movements.

A. Eye Touch Goggles

Eye Touch goggles are an eyeglasses frame without any
lenses as shown in Fig. 2. In our previous experimentation
stages, two infrared light sensitive goggle prototypes were
developed. The �rst prototype was reported in [3] and the
second one in [4]. In this paper, because of its proven higher
performance, the second prototype has been used.

In order to detect the iris movements, the goggles are
equipped with 12 infrared LEDs that illuminate both eyes
and reduce the risk of ambient light to deteriorate the system
performance, and with 12 infrared sensitive phototransistors
that produce voltage values with respect to the collected
amount of light in infrared spectrum. As it can be seen from
Fig. 2, both left and right frame portions include six LEDs
and sensors. It must be noted that the number of sensors
(phototransistors) is a design parameter. There is a substantial
relationship between the number of sensors and the system
accuracy, which will be shown in Sec. VI. Furthermore, the
sensors are surrounded by opaque cylindrical plastic covers,
which eventually causes the sensors to depict light re�ection
from speci�c portions of the eye.

As far as the number of LEDs is concerned, it can be
different than the number of sensors. Since the main purpose
of having LEDs on the goggles is illuminating the eye vicinity
homogeneously at a convenient brightness level, several of
them are placed to prevent the illumination variances. In
Appendix A, we present useful information about the eye
safety issues of infrared light emitted by the goggles.

The IR sensitive sensors used on the goggles are light-to-
voltage optical sensors. These sensors respond to the light in
800�1100 nm wavelength range with a sharp peak at 940 nm.
Since the IR LEDs used emit light at the wavelength of about
940 nm, the pairs match well.

Eye Touch goggles are connected to the data acquisition
device over a parallel communication cable. This cable carries
12 channel analog voltage signals to the device as well as the
power from the power supply for the sensors and LEDs. In its
current form, the goggles weigh about 50 grams.

B. Data Acquisition Device

Data Acquisition Device (DAQ), as shown in Fig. 3, is a
custom-made microcontroller based embedded system. DAQ
has been developed to be a bridge between the goggles, power
supply, and PC software (Fig. 1). We can summarize the
DAQ�s main tasks in the following.

1) Supplying regulated power to the goggles to enable
sensitive measurements against noise.

2) Collecting analog sensor measurements from the goggles
and digitizing them to generate a feature vector.

3) Sending feature vectors to our classi�cation and gaze
estimation software running on a PC.

One of the most important ef�ciency metrics for eye
tracking systems is the operating rate that is de�ned to
be the gaze vector computation rate per second. Operating

rate of a system, on the other hand, mostly depends on
its communication and computation requirements. The data
communication requirements of the system are discussed
herein, whereas computational requirements are discussed in
Sec. V.

A video-oculography based eye tracking system typically
uses a digital camera connected over a USB port to a PC.
The maximum transmission speed of USB 2.0 is 480 Mbits/s
or 60 MBytes/s (note that the actual bandwidth is lower
in practice). The maximum theoretical operating rate of a
video-oculography based eye tracking system can be computed
based on this bandwidth value. Let�s consider a standard VGA
camera with an RGB sensor that can acquire 640×480 frames.
Each VGA frame consumes 640 × 480 × 3 ∼= 0.9 MBytes. As
a result, the maximum operating rate of such a system can be
found as 60 ÷ 0.9 = 66.7 Hz. Considering the possibility of
the rapid eye movements for humans, this rate may impose
limitations.

As compared to the video-oculography based systems, Eye
Touch can reach higher operating rates, due to its small feature
vector size. Recall from Section III-A that the goggles have
12 sensors. Let us assume that each sensor output is converted
by an ADC with a resolution of 16-bit (2 bytes). Then,
each 12-dimensional feature vector consumes 12 × 2 = 24
bytes ∼= 0.024 MByte. Therefore, the maximum operating rate
becomes 60 ÷ 0.024 = 2.5 KHz. This operating rate, when
deployed, is well above what is typically required for an eye
tracking system. Although Eye Touch system can reach high
operating rates; we prefer to realize a simple DAQ prototype
for experimental purposes to verify that the proposed approach
is applicable. Our naive data acquisition device is capable of
running in real-time with a sampling rate of 10 Hz. The cost
of the goggles and the DAQ card is kept below $100 in total.

C. Eye Touch Software

Eye Touch system is complemented by the software that
runs on a PC. The software listens to DAQ device and handles
some major tasks based on the information provided by the
device. These tasks can be listed as the following:

1) Providing a user interface for collecting data, which is
shown in Fig. 4, and preprocessing the acquired data;

2) Running the classi�cation algorithm to determine the
current action performed by the user (left click, right
click, double click, or gaze) based on the sensor readings;

3) Running the gaze estimation algorithm to determine new
cursor position in case the current action turns out to be
gaze by the previous classi�cation step;

4) Performing the action related to the current event.
In Sec. IV, how these tasks are accomplished will be ex-

plained in detail, starting from system training and calibration.

D. Comparison of Eye Touch System

After revealing the components of Eye Touch system and
their main functions, we are ready to make a comparison
between Eye Touch and the existing systems. In Sec. II, we
present an overview of eye tracking approaches in the literature
including EOG, scleral search coil, light-re�ection based and
video-oculography.
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Fig. 4. Graphical user interface and 12 gaze calibration points of Eye Touch
software.

EOG systems are relatively low cost and have low com-
plexity. However, they can provide only limited accuracy
that make them suitable only for the applications in which
discrete resolution is enough. Therefore, their accuracy values
in terms of degrees cannot be obtained. Since Eye Touch
system provides continuous resolution, we cannot make a
quantitative comparison between Eye Touch and EOG systems
in terms of accuracy.

In eye tracking systems based on scleral search coil tech-
nique, very accurate results can be obtained (reported average
error in [14] is 0.003°). However, its hardware requirements
and intrusiveness severely limit the widespread adoption of
this type of eye trackers in daily life. On the other hand, since
Eye Touch requires a simple hardware and is not intrusive, it
offers a better solution for real life applications.

Likewise the EOG based eye tracking approaches, most of
the light-re�ection based systems, including previous versions
of Eye Touch, can provide limited accuracy and are usu-
ally used in the discrete resolution friendly applications [3],
[4], [15]-[20]. Unlike these systems, Eye Touch can provide
continuous resolution with a competitive accuracy.

Most of the video-based eye tracking systems are able
to provide continuous resolution, hence recent eye tracking
research has focused on video-based systems. Therefore, we
quantitatively compared Eye Touch with video-based eye
tracking systems in terms of accuracy and head pose invariance
(see Table I). As seen in the table, accuracies of the video-
based systems range from 0.5° to 4°. Furthermore, single
camera systems cannot provide head pose invariance unless
a relatively low accuracy (less than 1°) is acceptable. Both the
head pose invariance and reasonable accuracy can be provided
only if the amount of hardware is increased.

Considering the aforementioned comparisons, among EOG
and light-re�ection based eye tracking systems, Eye Touch
is the only one that provides continuous resolution. As far
as the head pose invariance is concerned, Eye Touch system
cannot provide this feature unless an additional mechanism
is employed. However, this drawback is also valid for most
of the single camera video-based eye tracking systems [31]-

TABLE I

Comparison of Eye Touch System With VOG Systems

Sensor Head Pose Accuracy (°) References
12 photodiodes × 0.9 Eye Touch System

1 camera × 2 - 4 [31], [32]
1 camera × 1 - 2 [33], [34], [35]
1 camera × 0.5 - 1.5 [36], [37]
1 camera

√
1 - 3 [38], [39]

2 cameras
√

3 [40]
2 cameras

√
< 1 - 2 [41]

3 cameras
√

0.7 - 1 [42]
4 cameras

√
0.6 [43]

[37]. Besides this fact, there are also many eye tracking
applications in which the head pose invariance is not required.
Wearable computers with head mounted displays (HMDs) and
mobile eye tracking systems are examples of such applications.
Considering the computational burden of video-based eye
tracking systems, mobility would become a problem in terms
of processing hardware and power ef�ciency. For mobile
systems, estimating the point of gaze with a couple of simple
sensors, as in the case of Eye Touch, becomes a useful
solution.

Eye Touch is also able to detect click events (left, right,
and double clicks) accurately by utilizing a pattern classi�-
cation method on the acquired sensor measurements. To our
knowledge, the click operations based on the blink detection
and their performances, e.g., accuracy and precision, have not
been reported in the literature.

Consequently, Eye Touch combines the continuous resolu-
tion capability of video-based systems and low-computational
framework of EOG and light-re�ection based systems in a
lightweight design. Finally, we can list the contributions that
this paper puts on top of the previous work as following:

1) Unlike EOG and other light-re�ection based systems, Eye
Touch provides continuous resolution in gaze estimation.

2) It offers a competitive gaze estimation performance as
compared to video-based systems.

3) It enables left, right, and double click actions through
highly accurate and precise blink detection.

4) It provides a low-computational framework for user event
detection and gaze estimation.

IV. System Training and Calibration

Before practically using Eye Touch system, the system must
be prepared with respect to its current user by means of the
system training and calibration that consists of three phases:

1) data collection and preprocessing;
2) training for gaze/click classi�cation;
3) calibration.

Each of these phases is elaborated below.

A. Data Collection and Preprocessing

System training and calibration starts with the data collec-
tion for which Eye Touch user interface in Fig. 4 is used.
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Fig. 5. Clusters of sensor voltage readings (V) belonging to 4 main events,
i.e., gaze, left, right, and double clicks.

During the data collection, a user must steadily face the mon-
itor (by a chin rest) and perform gazing and blink operations as
commanded by on-screen directions. Speci�cally, user is �rst
asked to sequentially look at sampling (training/calibration)
points numbered from one to twelve that form a 3 × 4 grid
on the screen. Finally, user is asked to perform left blink,
right blink, and double blink gestures, all at a suf�ciently
long duration (about 2 seconds). Consequently, overall data
collection phase lasts for about 30 seconds.

While the data collection is in progress, the goggles provide
ten sensor readings for each sampling point or blink gesture,
each of which is a 12-D vectors composed of voltage values.
In order to minimize the risk of the system being susceptible
to some unintentional eye moves (unintentional blinks and/or
unintentional gaze distractions), �ltering the acquired data
is required. Thus, during the preprocessing, we �lter out
the outlier vectors among these ten readings based on the
following simple method: (i) We �rst compute the centroid of
ten-vector cluster in 12-D space. (ii) We eliminate four of them
that lie farthest in Euclidean sense from the centroid, which
leaves six readings for each sampling point to be used in the
upcoming training and calibration phases. Effect of the outlier
removal operation on performance of Eye Touch is empirically
veri�ed. The quantitative results of this veri�cation is reported
in Sec. VI.

B. Training for Gaze / Click Classification

The possibility of distinguishing click operations from nor-
mal gazing activity arises from the observation of different
locus of feature data (readings from the sensors) in either case.
It was visually observed in 3-D space that the readings be-
longing to various sensor combinations form separate clusters
for four different user events. The readings for one of these
combinations are illustrated in Fig. 5. Considering this be-
havior of the sensor readings, the user events can be separated
using appropriate hyper-planes or hyper-surfaces provided by a
suitable pattern classi�cation algorithm. Therefore, Eye Touch
makes use of a classi�cation algorithm to �nd out the current
user event, which can be one of left click, right click, double
click, or gaze.

Fig. 6. Clusters of sensor voltage readings (V) for 12 different calibration
points.

Due to its popularity and proven performance, support
vector machine (SVM) classi�cation algorithm is adopted for
this paper, with the selection of linear kernel [44]. It must be
noted that this selection is just a design choice, and it does
not affect the idea and the performance critically. During the
training phase of SVM, the above mentioned preprocessed data
is utilized. Once the training is over, the computed support
vectors providing the maximum margins among four classes
are stored to be used for the event classi�cation in real-time
operation.

C. Calibration

Once the classi�cation algorithm determines that the current
user event is gaze, Eye Touch uses a gaze estimation algorithm
to further compute new cursor position in real-time. On the
other hand, the estimation algorithm is built upon linear
mapping or nonlinear mapping, both of which require two
mapping coef�cient vectors to set forth the cursor position.
These vectors must be computed (or calibrated) beforehand
for the real-time operation of the gaze estimation algorithm.
Thus, in this section, we �rst present our motivation for using
a linear/nonlinear mapping and explain how the calibration
is performed for each mapping mechanism based on the
preprocessed data.

In order to explain the rationale behind the proposed gaze
estimation approach, the sensor voltage readings from three
sensors (for the sake of 3-D plot visualization) are illustrated
for 12 different calibration points in Fig. 6. The �gure indicates
that the clusters formed by the sensor voltage readings do
no not arbitrarily lie on the sensor output vector space. On
the contrary, the distribution surprisingly follows a pattern,
revealing the possibility of a geometric model that can be
obtained through line and curve �tting methods. Furthermore,
it is interesting to note that the clusters are formed in 3-D
space with respect to the locations of calibration points in the
screen coordinate system (Fig. 4). Consequently, it is possible
to estimate gaze directions from the vector of sensor readings
that may correspond to arbitrary points among the training
points by means of a mathematical estimation method, i.e.,
least squares estimation (LSE).

The eminent class-layout pattern on the sensor output vector
space could be explained by the physical shape of an eyeball
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Fig. 7. Operational stages of Eye Touch system.

and the locations of sensors. The re�ected light from the eye
ball is higher in white regions as compared to that from the iris,
and this difference almost linearly changes as the iris moves
toward (or away from) a particular sensor, corresponding to
left, right, up, or down eye movements.

Since Eye Touch software knows the locations of calibration
points in the screen coordinate system, and there is a class-
layout pattern on the sensor output vector space, it is possible
to construct a mapping from the sensor voltage readings to the
known gaze points. For this purpose, two different mapping
strategies (linear and nonlinear) are tested in this paper. The
mapping coef�cients (linear or nonlinear) are calibrated during
this phase, as explained in the following sections.

1) Linear Mapping: Suppose that user is currently looking
at the coordinate (xscreen, yscreen) of the screen. These coordi-
nate axes can be expressed as

xscreen = cT
x · ϑ = cx0 + cx1f1 + cx2 f2 + · · · + cx12 f12. (1)

yscreen = cT
y · ϑ = cy0 + cy1f1 + cy2 f2 + · · · + cy12 f12 (2)

where cx = [cx0 cx1 . . . cx12 ]T and cy = [cy0 cy1 . . . cy12 ]T

denote the coef�cient vectors for x and y coordinates, and
ϑ = [1 f1 f2 . . . f12]T is the feature vector corresponding to
the sensor readings.

It was previously explained that during the data collection
phase, ten sensor readings, each of which is a 12-D vector of
voltage values, are made for each calibration point. In order
to eliminate unintentional eye winks, out of these ten sensor
readings, four outliers are eliminated during the preprocessing
phase, leaving six readings to be used in the calibration of
linear mapping. For the simplicity of mathematical notations,
consider Fi as the matrix composed of the six �ltered vectors
that are acquired when the user is gazing at ith calibration
point during the calibration

Fi =

⎡
⎢⎢⎢⎣

f1,1 f1,2 . . . f1,12

f2,1 f2,2 . . . f2,12
...

...
. . .

...
f6,1 f6,2 . . . f6,12

⎤
⎥⎥⎥⎦

6×12

. (3)

Considering that there are 12 calibration points, the set of
equations for the x coordinates of these calibrations points can
be represented as in Eq. 4⎡

⎢⎢⎢⎣
16 F1

16 F2
...

...
16 F12

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
F[72×13]

·

⎡
⎢⎢⎢⎣

cx0

cx1

...
cx12

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
cx [13×1]

=

⎡
⎢⎢⎢⎣

x1

x2
...

x12

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x[72×1]

, (4)

Fig. 8. User is experimenting with one of the applications developed for
Eye Touch system.

where 1n denotes n×1 vector of unites, and xi = xi ·16, where
xi is the x coordinate of the ith calibration point. Similarly,
the set of equation for the y coordinates of these calibrations
points can be denoted as

F72×13 × cy13×1 = y72×1. (5)

The unknown set is composed of the vector of coef�cients,
cx, which is of size 13. Since this value is less than the
number of equations, which is 72, a least squares solution
strategy based on singular value decomposition (SVD) [45] is
adopted. Finally, a vector (cx) that approaches the above set
of equations in the minimum squared error sense is evaluated.
Following the similar strategy for the y-axis, cy vector is also
computed, wrapping up the calibration phase for the linear
mapping approach.

2) Nonlinear Mapping: The plot presented in Fig. 6
contains clues of a relation between the gaze direction and the
sensor readings. It is, however, dif�cult to claim a perfectly
linear relation. In order to test the possibility of a performance
improvement, a nonlinear approach is tested. Obviously, more
complicated nonlinearities than the ones in Eq. 6 and 7 could
also be tested. However, the idea of the paper is to introduce
the sensor based apparatus and its possible application to gaze
direction estimation, so other (in�nitely many) nonlinearities
were left beyond the scope of this paper.

In the nonlinear mapping adopted herein, (xscreen, yscreen) is
denoted as

xscreen = cx0 + cx1f1 + cx2 f2 + ... + cx12 f12 +

cx13f
2
1 + cx14f

2
2 + ... + cx24f

2
12 (6)

yscreen = cy0 + cy1f1 + cy2 f2 + ... + cy12 f12 +

cy13f
2
1 + cy14f

2
2 + ... + cy24f

2
12 (7)

Note that the number of parameters is doubled (from 12
to 24) to achieve coef�cients of second order polynomials.
Consequently, the set of equations for the x coordinates of
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TABLE II

Error Results of Point of Gaze Estimation in Terms of Degrees

Method Gender Eye Color Ambient Luminosity Overall
Male Female Brown Other L<50 50<L<100 100<L

Linear 1.60 1.66 1.59 1.87 1.56 1.54 1.69 1.61
Nonlinear 0.93 0.96 0.94 1.10 0.92 0.85 0.97 0.93

twelve calibration points can be represented as follows⎡
⎢⎢⎢⎣

16 F1 F1.F1

16 F2 F2.F2
...

...
...

16 F12 F12.F12

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
F[72×25]

·

⎡
⎢⎢⎢⎣

cx0

cx1

...
cx25

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
cx [25×1]

=

⎡
⎢⎢⎢⎣

x1

x2
...

x12

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x[72×1]

(8)

where X.Y denotes the matrix whose entries [X.Y]ij = Xij.Yij .
In a similar manner, the set of equations for their y coordinates
become

F72×25 × cy25×1 = y72×1. (9)

In a similar manner, we solve the equation system of nonlinear
mapping based on SVD [45] method. As a result, similar to the
linear mapping, the calibration is over once the two coef�cient
vectors are computed.

V. Event Detection and Gaze Estimation

After the system training and calibration is over, the Eye
Touch is ready for �nding out eye clicking gestures and eye
gaze direction in real-time. The real-time operation of the Eye
Touch is shown in Fig. 7.

According to this �gure, our classi�cation algorithm (or
classi�er) trained using the preprocessed data is at the �rst
stage in the real-time operation. The classi�er makes a decision
on the current user event in the following.

1) A new 12-D feature is acquired from twelve sensors on
the goggles.

2) SVM classi�cation for the unknown feature vector is car-
ried out using the support vectors, which are previously
computed and stored in the training phase.

3) Finally, the unknown feature vector is assigned to a class
(left click, right click, double click, or gaze) based on the
outcome of SVM classi�cation.

Eye Touch immediately handles the classes corresponding
to left, right, or double click events. The gaze class, however,
needs further computation of the gaze direction, which is the
second stage in the real-time operation as shown in Fig. 6.
Speci�cally, the estimator computes (xscreen, yscreen) in the
following.

1) 12-D feature is further applied to the estimator.
2) The gaze direction estimation based on the linear and

nonlinear mapping is accomplished by means of (1)-
(2) and (5)-(6), respectively. Thus, a dot product of two
vectors, namely, the mapping coef�cient vector (cx, cy)
and feature vector, is required to estimate xscreen and
yscreen, respectively.

The Eye Touch software performs the required action,
whether it is a mouse click or moving the cursor to its new
position.

VI. Experimental Results

To assess ef�cacy of the proposed tracking system, data
are acquired from 50 distinct users under different lighting
conditions (L) varying between 15 and 167 lux as described
in Sec. IV-A. Amongst those users, 39 are male and 11 are
female; 45 users have dark eye color and 5 users have light
eye color. Consequently, 50 different datasets are constituted
with different lighting, gender, and eye color attributes. Fig. 8
shows the physical structure of the prepared testbed and a user
who participated in the experimental study.

A. Classification Performance

As we noted in Sec. III-C, Eye Touch system consists of
two main stages, classi�cation and, if a click gesture is not the
case, then gaze estimation. Therefore, overall accuracy of the
system depends on the performance of both of these stages.
In this section, we present the accuracy and precision values
obtained by SVM classi�cation in the �rst stage. These values
are obtained by employing 80% of the collected sensor data
for the training phase, and the remaining 20% for the test
phase of SVM classi�er.

Considering all four events, the accuracy values are between
91% and 98% whereas the precision values range from 94% to
98% as illustrated in Fig. 9. Furthermore, near perfect accuracy
and precision levels especially for the gazing establishes a �rm
ground for the gaze estimation algorithm.

B. Gaze Estimation Performance

Gaze estimation performance of Eye Touch system is eval-
uated by comparing the actual calibration points against the
estimated gaze locations for all the users enrolled within the
study. The results of gaze estimation with nonlinear mapping
for ten distinct users are illustrated in Fig. 10. Additionally,
the gaze estimation accuracy of Eye Touch is presented for all
50 users in Fig. 11 for both linear and nonlinear mapping
approaches. As expected, nonlinear mapping offered more
accurate results for almost all users. More speci�cally, we have
reached 0.58° as the best average error result with nonlinear
mapping. The average angular gaze direction errors for all
users were 1.61° in linear mapping, and 0.93° in nonlinear
mapping. It was experimentally veri�ed that if the outlier
elimination is not applied, average gaze estimation errors
would increase to 2.18° and 1.88° for linear and nonlinear
mapping strategies, respectively.
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TABLE III

Selected Feature Subset for Different Users

Selected Features
Users 1 2 3 4 5 6 7 8 9 10 11 12
User 1

√ √ √ √ √

User 2
√ √ √ √ √ √ √

User 3
√ √ √ √ √ √ √

User 4
√ √ √ √ √ √ √ √

User 5
√ √ √ √ √ √

User 6
√ √ √ √ √ √ √ √

Fig. 9. Accuracy and precision values for classi�cation of gaze and click
events.

More detailed results with respect to gender, eye color, and
ambient luminosity are also presented in Table II. One can note
from this table that Eye Touch estimated the gaze direction
with an average error as low as 0.93° for male users and 0.96°

for female users. Considering the eye colors of the users, an
error of 0.94° was attained for the brown eye color whereas the
error was 1.10° for the other eye colors. Finally, for different
ranges of ambient luminosity, the errors ranging from 0.85° to
0.97° were obtained.

All of the above mentioned accuracies are satisfactory
enough to compare Eye Touch with modern video-based
systems. In majority of the video-based eye tracking studies
[31]-[43], the reported accuracies are varying from 0.5° to 4.0°

(see Table I) in terms of the angular gaze estimation error
for both remote and head mounted systems. Considering its
fair accuracy and low computational requirements, Eye Touch,
therefore, proves itself to constitute a promising candidate
for both mobile and stationary human computer interface
applications even under varying conditions, such as lighting,
eye color, and gender of the user.

C. Best Feature Set

The Eye Touch goggles were designed to ef�ciently capture
light re�ectance from various portions of the human eye.
Nevertheless, the design is ad-hoc, and it remains to be an
interesting issue to know which of the sensors carry more
information. To analyze this, the feature vector elements are
tested for classi�cation and gaze angle accuracy in a combi-
national manner. Particularly, the sequential forward �oating
selection technique [46] is employed to determine the best fea-
ture set minimizing the gaze estimation error in each dataset.
Thus, relevancy or redundancy of the sensors is obtained.

Fig. 10. Gaze estimation results of ten users with nonlinear mapping.
Diamonds: screen calibration points. Plus signs: estimated gaze points.

Table III presents the selected feature subsets for some of
the users enrolled in the experiments. It can be noticed that the
selected feature subset contains different features for different
users. Moreover, each individual feature is present in at least
two datasets; therefore, none of the sensors can be eliminated
from the system. This is valid for all 50 users. Consequently,
it was concluded that each sensor has a particular contribution
to the accuracy for distinct users.

D. Computational Performance

Running times of the classi�cation and gaze estimation
stages were also measured to verify that Eye Touch is suitable
for real-time operation. The measurements taken on a desktop
computer equipped with Intel Core2Duo 2.2 GHz processor
and 2 GB of RAM indicate the following: SVM classi�cation
is completed in 0.15 msec; linear and nonlinear mapping based
gaze estimation require 0.011 msec and 0.018 msec, respec-
tively. Considering the DAQ implementation of Eye Touch
system, the classi�cation and gaze estimation operations are
carried out in real-time with considerably low computational
requirements.

VII. Conclusion

In this paper, Eye Touch system�which is based on
portable and low cost components in a wearable form�
was proposed and implemented for gaze estimation and blink
gesture detection for click actions. The elimination of classical
video camera and corresponding high computational cost
can be considered as an advantage of the proposed system.
Besides, this paper gave an insight and plausible results
of a novel infrared oculographic approach to the detection
of gaze direction and eye winks. The experimental results
indicated that Eye Touch constitutes a promising user interface
alternative in certain circumstances where hand control may
be inconvenient.

The proposed eye tracking system offered an adequate
accuracy even under varying conditions, such as lighting,
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Fig. 11. Computed per user and average gaze estimation errors in terms of
degree with linear and nonlinear mapping.

eye color, and gender of the user. The best accuracy result
we obtained during the experiments was an average angular
deviation of 0.58° for one user. The average gaze angular
accuracy for all the users was 0.93°. Considering the cost of
the entire system being below $100, Eye Touch is a promising
candidate for a wide range of eye tracking applications.

An important �nding of the study was on the ef�ciency of
infrared sensors. It was observed that the set of 12 sensors
contains a collective set of information, which is useful for
arbitrary users. Therefore, no particular sensor was selected
as more important or redundant.

Another useful characteristic of Eye Touch system is its
convenience for left, right, or double click operations (which
corresponds to left blink, right blink, and all-blink) of the
user in the assistive applications. In eye tracking systems,
clicking operations are usually handled by some additional
mechanisms such as simple switches. As it is shown in the
previous section, Eye Touch is able to support all clicking
operations with very high accuracy without any switch or
gearing by the help of its authentic feature extraction method,
i.e., the goggles. Since the re�ected light readings signi�cantly
differed when the eyelids were closed, the classi�cation of the
click events became an easy task for people who were capable
of deliberately blinking their eyes. Due to outlier elimination
of short and natural blinks, these operations were not confused
with the unintentional and natural blinks.

A restriction of the proposed system was about being unable
to move the head freely in its current form. This drawback can
be �xed by additional chin-rest mechanisms that many eye-
tracking systems have already used. Interestingly, the style
of using goggles for gaze detection becomes a fortunate
advantage in head mounted displays, where the vision is
displayed on a pair of glasses, so the display and the head
moves together. In such systems, with the incorporation of
the proposed sensors, a natural eye tracking system can be
achieved. In fact, HMDs are getting demanding in parallel with
the improvements on mobile systems. With the incorporation
of mobile multimedia devices, HMDs become a personal
display, e.g. Google�s Project Glass [47]. In those equipments,
controlling the system with gestures can be a tough and
energy inef�cient task for camera based eye tracking due to
the mounting, occlusion, and sensor (CCD, CMOS) energy

consumption problems. Project Glass consists of a HMD
and a simple computer with mobile communication systems
mounted on a glass [47]. The aim of the project was to
make the user�s life easier with the augmented reality based
features. In the project, the user (the one wears the glasses)
was supposed to perform actions by gazing. In such systems,
estimating the user gaze with computation intensive image
processing algorithms requires signi�cant computation power
and may cause quick battery drains. On the contrary, with an
approach similar to Eye Touch, the problem can be solved
with an effortless and ef�cient manner.

As a conclusion, among few approaches to eye tracking, Eye
Touch is proposed to become an alternative solution for mobile
systems. In this particular work, a dedicated software was
developed for the proposed hardware, and tested by several
subjects. It is argued that the proposed tool can easily be
placed on an eye-glasses frame. With the help of a chin-rest to
stabilize and avoid head movement; it can be used to control
computerized hardware without leaving your hands off your
job. With possible incorporation of head motion compensation
or by implementing the sensors on a head mounted display,
Eye Touch can also be a very handful interface for those who
need to deal with additional controls while doing their actual
work. As a result, it was concluded that the idea of IR sensor
utilization for eye position sensing is a promising attempt to
accurately detecting the eye-gaze direction. In the future, it is
planned to integrate the Eye Touch into a wearable computer
having an HMD rather than using the system with a desktop
computer. Therefore, Eye Touch can be a solution for novel
and ef�cient user interfaces for various applications, such as
vehicle and wheelchair control for disabled.

Appendix A

Eye Safety Issues for Goggles

While six IR LEDs illuminate each eye homogeneously,
Eye Touch goggles should be proved to be eye safe. That
is, the goggles must be compliant with applicable safety
standards IEC 825-1 and EN 60825-1 [48]. In order to show
the compliance of the goggles with IEC 825-1, accessible
exposure limit (AEL) in mW/sr must be �rst computed for
the IR LED (TSUS 5400) used in the goggles where AEL in
mW/sr is de�ned to be [48]

AEL(mW/sr) = AEL(mW)/�(sr). (10)

AEL in mW is de�ned to be

AEL(mW) =
103

t

[
7.10−4.t0.75.100.002(λ−700).

(
α

αmin

)]
(11)

where t is the exposure duration in seconds, λ is the
wavelength in nanometers, αmin is the apparent source angular
subtense above which the source is considered an extended
source in milliradians (mrad), and α = 2000tan−1((s/2)/100)
is the angle subtended that completely contains the apparent
source size at a distance of 100 mm from the source in mil-
liradians with s being the apparent source size in millimeters.
For the goggles IR LEDs, AEL is found to be 1.845 mW by
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taking t = 100 sec, α = 950 nm, αmin = 11 mrad, s = 2.90 mm
(from the datasheet of TSUS 5400 [49]) and α = 29 mrad.

The solid angle �(sr) is de�ned to be

�(sr) = 2π(1 − cos(tan−1(d/2r))) (12)

where d = 7 mm and r = 100(s/10 + 0.0046)0.5mm. For the
goggles IR LEDs, the solid angle is found to be 0.013 sr by
taking s = 2.90 mm. Finally AEL becomes

AEL (mW/sr) = 1.845 mW/0.013 sr = 141 mW/sr. (13)

In order for the goggles to be eye safe, the total radiant
intensity due to six IR LEDs must be less than 141 mW/sr.
During the normal operation of the goggles, each IR LED
draws about 30 mA forward current, which results in a radiant
intensity value of 10 mW/sr [49]. As a result, six IR LEDs
produce a total radiant intensity value of 60 mW/sr, which is
well under the allowed AEL for the goggles to be eye safe.
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